利来国际旗舰厅

跟踪训练4 某商场举行有奖促销活动,顾客购买一定金额的商品后即可抽奖,每次抽奖都是从装有4个红球、6个白球的甲箱和装有5个红球、5个白球的乙箱中,各随机摸出1个球,在摸出的2个球中,若都是红球,则获一等奖;若只有1个红球,则获二等奖;若没有红球,则不获奖.(1)求顾客抽奖1次能获奖的概率;解答解 记事件A1={从甲箱中摸出的1个球是红球},A2={从乙箱中摸出的1个球是红球},B1={顾客抽奖1次获一等奖},B2={顾客抽奖1次获二等奖},C={顾客抽奖1次能获奖}.故所求概率为 离散型随机变量的均值第2章 随机变量的均值和方差学习目标1.通过实例理解离散型随机变量均值的概念,能计算简单离散型随机变量的均值.2.理解离散型随机变量的均值的性质.3.掌握两点分布、二项分布的均值.4.会利用离散型随机变量的均值,反映离散型随机变量的取值水平,解决一些相关的实际问题.题型探究问题导学内容索引当堂训练问题导学知识点一 离散型随机变量的均值或数学期望设有12个西瓜,其中4个重5kg,3个重6kg,5个重7kg.思考1 任取1个西瓜,用X表示这个西瓜的重量,试问X可以取哪些值?答案答案 X=5,6,7.思考2 当X取上述值时,对应的概率分别是多少?答案思考3 如何求每个西瓜的平均重量?答案(1)数学期望:E(X)=μ=.(2)性质①pi≥0,i=1,2,…,n;②p1+p2+…+pn=1.(3)数学期望的含义:它反映了离散型随机变量取值的.Xx1x2…xnPp1p2…pn离散型随机变量的均值或数学期望一般地,若离散型随机变量X的概率分布如下表:梳理x1p1+x2p2+…+xnpn平均水平知识点二 两点分布、超几何分布、二项分布的均值1.两点分布:若X~0-1分布,则E(X)=.2.超几何分布:若X~H(n,M,N),则E(X)=.3.二项分布:若X~B(n,p),则E(X)=.pnp题型探究命题角度1 一般离散型随机变量的均值例1 某同学参加科普知识竞赛,需回答三个问题,竞赛规则规定:每题回答正确得100分,回答不正确得-100分,假设这名同学回答正确的概率均为,且各题回答正确与否相互之间没有影响.(1)求这名同学回答这三个问题的总得分X的概率分布和均值;解答类型一 离散型随机变量的均值解 X的可能取值为-300,-100,100,(X=-300)==,P(X=300)==,所以X的概率分布如下表:X-300-所以E(X)=(-300)×+(-100)×+100×+300×=180(分).(2)求这名同学总得分不为负分(即X≥0)的概率.解 这名同学总得分不为负分的概率为P(X≥0)=P(X=100)+P(X=300)=+=解答求随机变量X的均值的方法和步骤(1)理解随机变量X的意义,写出X所有可能的取值.(2)求出X取每个值的概率P(X=k).(3)写出X的分布列.(4)利用均值的定义求E(X).反思与感悟跟踪训练1 在有奖摸彩中,一期(发行10000张彩票为一期)有200个奖品是5元,20个奖品是25元,5个奖品是100元.在不考虑获利的前提下,一张彩票的合理价格是多少元?解答解 设一张彩票的中奖额为随机变量X,显然X的所有可能取值为0,5,25,100.依题意X的概率分布如下表:=,所以一张彩票的合理价格是元.命题角度2 二项分布与两点分布的均值例2 某运动员投篮命中率为p=(1)求投篮1次命中次数X的均值;解 投篮1次,命中次数X的概率分布如下表:解答则E(X)=(2)求重复5次投篮,命中次数Y的均值.解 由题意知,重复5次投篮,命中次数Y服从二项分布,即Y~B(5,),E(Y)=np=5×=3.解答引申探究在重复5次投篮时,命中次数为Y,随机变量η=5Y+2.求E(η).解 E(η)=E(5Y+2)=5E(Y)+2=5×3+2=17.解答(1)常见的两种分布的均值设p为一次试验中成功的概率,则①两点分布E(X)=p;②二项分布E(X)=np.熟练应用上述两公式可大大减少运算量,提高解题速度.(2)两点分布与二项分布辨析①相同点:一次试验中要么发生要么不发生.②不

  • 博客访问: 677904
  • 博文数量: 979
  • 用 户 组: 普通用户
  • 注册时间:2018-12-16 22:49:57
  • 认证徽章:
个人简介

与免疫机制有关。

文章分类

全部博文(439)

文章存档

2015年(269)

2014年(358)

2013年(737)

2012年(758)

订阅

分类: 糗事百科

利来国际旗舰厅,知识点1:认识平行和垂直一、知识归纳平行:在同一平面内,永不相交的两条直线叫做平行线。()28.用止血带为伤员止血,一定要扎紧,如果扎得不紧,深部动脉仍有血液流出。www.w66利来国际要把系统掌握马克思主义基本理论作为看家本领,切实加强对马克思列宁主义、毛泽东思想的学习,加强对中国特色社会主义理论体系的学习,加强对习近平总书记系列重要讲话精神的学习,进一步坚定道路自信、理论自信、制度自信,做到虔诚而执着、至信而深厚。A、接受聘请担任评标委员会成员B、依法对投标文件进行评审,听从有关单位建议提出评审意见C、接受参加评标活动的劳务报酬D、评标专家信息在中标结果确定前应当保密2、根据国铁工程监〔2017〕27号《铁路建设工程评标专家库及评标专家管理办法》,关于专家权利和义务的规定,下列哪些属于评标专家享有的权利(ABCD)。

从1994年开始,襄樊市政府就着手开始治理城市污水,保护汉江水体水质,解决城市污水对汉江环境的污染问题。2,MFB:a区。利来娱乐w66跟踪训练4 某商场举行有奖促销活动,顾客购买一定金额的商品后即可抽奖,每次抽奖都是从装有4个红球、6个白球的甲箱和装有5个红球、5个白球的乙箱中,各随机摸出1个球,在摸出的2个球中,若都是红球,则获一等奖;若只有1个红球,则获二等奖;若没有红球,则不获奖.(1)求顾客抽奖1次能获奖的概率;解答解 记事件A1={从甲箱中摸出的1个球是红球},A2={从乙箱中摸出的1个球是红球},B1={顾客抽奖1次获一等奖},B2={顾客抽奖1次获二等奖},C={顾客抽奖1次能获奖}.故所求概率为 离散型随机变量的均值第2章 随机变量的均值和方差学习目标1.通过实例理解离散型随机变量均值的概念,能计算简单离散型随机变量的均值.2.理解离散型随机变量的均值的性质.3.掌握两点分布、二项分布的均值.4.会利用离散型随机变量的均值,反映离散型随机变量的取值水平,解决一些相关的实际问题.题型探究问题导学内容索引当堂训练问题导学知识点一 离散型随机变量的均值或数学期望设有12个西瓜,其中4个重5kg,3个重6kg,5个重7kg.思考1 任取1个西瓜,用X表示这个西瓜的重量,试问X可以取哪些值?答案答案 X=5,6,7.思考2 当X取上述值时,对应的概率分别是多少?答案思考3 如何求每个西瓜的平均重量?答案(1)数学期望:E(X)=μ=.(2)性质①pi≥0,i=1,2,…,n;②p1+p2+…+pn=1.(3)数学期望的含义:它反映了离散型随机变量取值的.Xx1x2…xnPp1p2…pn离散型随机变量的均值或数学期望一般地,若离散型随机变量X的概率分布如下表:梳理x1p1+x2p2+…+xnpn平均水平知识点二 两点分布、超几何分布、二项分布的均值1.两点分布:若X~0-1分布,则E(X)=.2.超几何分布:若X~H(n,M,N),则E(X)=.3.二项分布:若X~B(n,p),则E(X)=.pnp题型探究命题角度1 一般离散型随机变量的均值例1 某同学参加科普知识竞赛,需回答三个问题,竞赛规则规定:每题回答正确得100分,回答不正确得-100分,假设这名同学回答正确的概率均为,且各题回答正确与否相互之间没有影响.(1)求这名同学回答这三个问题的总得分X的概率分布和均值;解答类型一 离散型随机变量的均值解 X的可能取值为-300,-100,100,(X=-300)==,P(X=300)==,所以X的概率分布如下表:X-300-所以E(X)=(-300)×+(-100)×+100×+300×=180(分).(2)求这名同学总得分不为负分(即X≥0)的概率.解 这名同学总得分不为负分的概率为P(X≥0)=P(X=100)+P(X=300)=+=解答求随机变量X的均值的方法和步骤(1)理解随机变量X的意义,写出X所有可能的取值.(2)求出X取每个值的概率P(X=k).(3)写出X的分布列.(4)利用均值的定义求E(X).反思与感悟跟踪训练1 在有奖摸彩中,一期(发行10000张彩票为一期)有200个奖品是5元,20个奖品是25元,5个奖品是100元.在不考虑获利的前提下,一张彩票的合理价格是多少元?解答解 设一张彩票的中奖额为随机变量X,显然X的所有可能取值为0,5,25,100.依题意X的概率分布如下表:=,所以一张彩票的合理价格是元.命题角度2 二项分布与两点分布的均值例2 某运动员投篮命中率为p=(1)求投篮1次命中次数X的均值;解 投篮1次,命中次数X的概率分布如下表:解答则E(X)=(2)求重复5次投篮,命中次数Y的均值.解 由题意知,重复5次投篮,命中次数Y服从二项分布,即Y~B(5,),E(Y)=np=5×=3.解答引申探究在重复5次投篮时,命中次数为Y,随机变量η=5Y+2.求E(η).解 E(η)=E(5Y+2)=5E(Y)+2=5×3+2=17.解答(1)常见的两种分布的均值设p为一次试验中成功的概率,则①两点分布E(X)=p;②二项分布E(X)=np.熟练应用上述两公式可大大减少运算量,提高解题速度.(2)两点分布与二项分布辨析①相同点:一次试验中要么发生要么不发生.②不(听、说、读、写的障碍)由于脑步损伤使原来已经获得的语言能力受到损伤或丧失的一种语言障碍综合症。

阅读(813) | 评论(595) | 转发(502) |

上一篇:w66.com

下一篇:国际利来ag厅

给主人留下些什么吧!~~

张梦茹2018-12-16

蒋氏女主要是因为椎管内的交感神经纤维受到刺激所至。

A、拉紧驻车制动器操纵杆B、踏下加速踏板C、踏下离合器踏板D、松抬制动踏板24.发生缓慢翻车有可能跳车

牧原泉2018-12-16 22:49:57

同年7月,市政府制定了《长春汇津污水处理专营管理办法》。

三瓶由布子2018-12-16 22:49:57

A、短语B、简单短语C、素短语D、终结符号【参考答案】:B满分:43如果文法G是无二义的,则它的任何句子α_____。,前言目录目录第一章经济预测概述§经济预测的研究对象§经济预测的发展概况§经济预测的一般原理§经济预测与经济管理的关系§经济预测的基本步骤§经济预测的准确性评价与度量第二章定性预测方法§专家预测方法§德尔菲法§主观概率预测方法§交互影响矩阵分析预测方法第三章回归分析预测方法§一元线性回归分析预测法§多元线性回归分析预测法§可线性化的非线性回归预测法§自回归分析预测法§回归系数动态修正自适应回归预测方法第四章时间序列预测方法§移动平均预测法§指数平滑预测法§具有季节性变动的时间序列分解预测方法§温特斯线性与季节性指数平滑预测方法§自适应过滤预测方法第五章增长曲线预测方法§多项式曲线模型预测方法§指数曲线模型预测方法§修正指数曲线模型预测方法§生长(S)曲线模型预测方法第六章随机时间序列分析预测方法——Box-Jenkins方法§随机时间序列的基本概念§方法的数学模型§模型识别§参数估计§模型检验§模型预测第七章经济预测实际操作中的几个技术性问题§预测数据的收集、分析和整理§预测模型的选择和建立§预测结果的分析参考文献。附属结构的处理1,探查前叉止点有无撕脱性骨折块,如果有,一并处理。。

房若宸2018-12-16 22:49:57

习题课离散型随机变量的方差与标准差第2章 概率学习目标1.进一步理解离散型随机变量的方差的概念.2.熟练应用公式及性质求随机变量的方差.3.体会均值和方差在决策中的应用.题型探究知识梳理内容索引当堂训练知识梳理1.方差、标准差的定义及方差的性质(1)方差及标准差的定义:设离散型随机变量X的概率分布为Xx1x2…xi…xnPp1p2…pi…pn①方差V(X)=(x1-μ)2p1+(x2-μ)2p2+…+(xn-μ)2pn.(其中μ=E(X))②标准差为.(2)方差的性质:V(aX+b)=.a2V(X)2.两个常见分布的方差(1)两点分布:若X~0-1分布,则V(X)=;(2)二项分布:若X~B(n,p),则V(X)=.p(1-p)np(1-p)题型探究例1 一出租车司机从某饭店到火车站途中有六个交通岗,假设他在各交通岗遇到红灯这一事件是相互独立的,并且概率是(1)求这位司机遇到红灯数ξ的均值与方差;解 易知司机遇上红灯次数ξ服从二项分布,解答类型一 二项分布的方差问题(2)若遇上红灯,则需等待30s,求司机总共等待时间η的均值与方差.解 由已知η=30ξ,故E(η)=30E(ξ)=60,V(η)=900V(ξ)=1200.解答解决此类问题的第一步是判断随机变量服从什么分布,第二步代入相应的公式求解.若它服从两点分布,则方差为p(1-p);若它服从二项发布,则方差为np(1-p).反思与感悟跟踪训练1 在某地举办的射击比赛中,规定每位射手射击10次,每次一发.记分的规则为:击中目标一次得3分;未击中目标得0分;并且凡参赛的射手一律另加2分.已知射手小李击中目标的概率为,求小李在比赛中得分的均值与方差.解 用ξ表示小李击中目标的次数,η表示他的得分,则由题意知ξ~B(10,),η=3ξ+2.因为E(ξ)=10×=8,V(ξ)=10××=,所以E(η)=E(3ξ+2)=3E(ξ)+2=3×8+2=26,V(η)=V(3ξ+2)=32×V(ξ)=9×=解答例2 某投资公司在2017年年初准备将1000万元投资到“低碳”项目上,现有两个项目供选择:项目一:新能源汽车.据市场调研,投资到该项目上,到年底可能获利30%,也可能亏损15%,且这两种情况发生的概率为项目二:通信设备.据市场调研,投资到该项目上,到年底可能获利50%,可能亏损30%,也可能不赔不赚,且这三种情况发生的概率分别为针对以上两个投资项目,请你为投资公司选择一个合理的项目,并说明理由.类型二 均值、方差在决策中的应用解答解 若按项目一投资,设获利X1万元,则X1的概率分布如下表:=35000,若按项目二投资,设获利X2万元,则X2的概率分布如下表:∴E(X1)=E(X2),V(X1)<V(X2),这说明虽然项目一、项目二获利相等,但项目一更稳妥.综上所述,建议该投资公司选择项目一投资.离散型随机变量的均值反映了离散型随机变量取值的平均水平,而方差反映了离散型随机变量取值的稳定与波动、集中与离散的程度.因此在实际决策问题中,需先运算均值,看一下谁的平均水平高,然后再计算方差,分析一下谁的水平发挥相对稳定,当然不同的模型要求不同,应视情况而定.反思与感悟跟踪训练2 已知甲、乙两名射手在每次射击中击中的环数均大于6,且甲射中10,9,8,7环的概率分别为,3a,a,,乙射中10,9,8环的概率分别为,,记甲射中的环数为ξ,乙射中的环数为η.(1)求ξ,η的概率分布;解答解 依据题意知,+3a+a+=1,解得a=∵乙射中10,9,8环的概率分别为,,,∴乙射中7环的概率为1-(++)=∴ξ,η的概率分布分别为ξη(2)求ξ,η的均值与方差,并以此比较甲、乙的射击技术.解 结合(1)中ξ,η的概率分布,可得E(ξ)=10×+9×+8×+7×=,E(η)=10×+9×+8×+7×=,V(ξ)=(10-)2×+(9-)2×+(8-)2×+(7-)2×=,V(η)=(10-)2×+(9-)2×+(8-)2×+(7-8,A.单证审核。梅须逊雪三分白,雪却输梅一段香。。

加保提2018-12-16 22:49:57

这世上得到最多的人正是那些不计得失的人。,学校:巴音郭楞职业技术学院院系:商务经济管理学院专业:14高职投资理财姓名:唐伟龙;张开了翅膀  目的地是远方  征途中的风浪  印证着年少的痴狂  失败,彷徨和迷惑  也不能阻挡我们追逐梦想  在受伤的路上,我们学会坚强大学是大学生未来事业的助跑器。。6、在品牌方面,我们只针对个体品牌进行统计和分析,而不考虑企业之间的资本状况,涉及到这方面的品牌主要有大金和麦克维尔、开利和富尔达等。。

李岩红2018-12-16 22:49:57

第一版由RyanDahl于2009年2月发布,之后获得了迅猛的发展,截止至2014年3月,虽然版本仍未到正式版,但已经在商业环境中得到很多应用。,梁陶宏景(年)著《名医别录》,并与《神农本草经》合编为《本草经集注》,不仅认为《神农本草经》中有近种中药具有止痛功效,而且新增了止痛中药种;并且提出“诸病通用药”,其中系统总结了魏晋时名医治疗贼风挛痛、心腹冷痛、喉痹痛、齿痛、目热痛、腰痛等痛症时常用中药,例如:腰痛,用杜仲、萆薢、狗脊、梅实、鳖甲、五加皮;贼风挛痛,用茵芋、附子、侧子、麻黄、芎、萆薢、狗脊、白藓皮、白及、苍耳、猪椒、杜仲,都来源于临床实践。。要敢想敢做敢当,牢固树立责任重于泰山的意识,坚持党的原则第一、党的事业第一、人民利益第一,面对大是大非敢于亮剑,面对矛盾敢于迎难而上,面对危机敢于挺身而出,面对失误敢于承担责任,面对歪风邪气敢于坚决斗争。。

评论热议
请登录后评论。

登录 注册

利来国际备用 利来娱乐w66 利来国际AG旗舰店 利来国际公司 利来国际备用
利来国际老牌博彩 利来网上娱乐 wwww66com利来 利来国际娱乐官方网站 w66.con
w66.com 利来娱乐国际ag旗舰厅 利来国际旗舰版 利来国际娱乐 w66利来国际
利来国际网址 利来国际在钱服务 国际利来旗舰厅 利来国际w66最新
镇安县| 钦州市| 东安县| 通海县| 龙岩市| 宜兰县| 多伦县| 呈贡县| 和林格尔县| 章丘市| 桑植县| 来宾市| 都江堰市| 五家渠市| 苏尼特左旗| 汶上县| 新晃| 卢湾区| 清水县| 永城市| 浦东新区| 马尔康县| 郎溪县| 怀集县| 延川县| 山西省| 亳州市| 襄汾县| 泰宁县| 时尚| 彩票| 仁布县| 抚州市| 佛学| 金华市| 望都县| 蓬安县| 嘉善县| 保靖县| 仲巴县| 界首市| http:// http:// http:// http:// http:// http://